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An algorithm
> Log spectrum representation of image

> Five-line source code
° [07CVPR] Saliency Detection: A Spectral Residual Approach

A dataset
o PASCAL-S

° [14CVPR]The Secrets of Salient Object Segmentation

A joke
o Two reviews from CVPR reviewer for Xiaodi Hou

> 5 - Definitely reject This paper is very interesting, and it should definitely be published, but not
at NIPS.

> 3 - References missing Some important references are missing, the followings list a few: Xiaodi
Hou, Liging Zhang: Saliency Detection: A Spectral Residual Approach. CVPR 2007
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Motivation
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How Men And Women Look
At Advertisement Differently

Visual Fixation Order
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How Men And Women Look
At Advertisement Differently
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Visual Attention Pattern




Eve Tracking




Application

CONTENT-AWARE IMAGE/VIDEO RESIZING
OBJECT SEGMENTATION




Content-aware Image/video
Resizing




Object Segmentation




Object Segmentation%




Two Different
Tasks of Saliency

FIXATION PREDICTION
SALIENT OBJECT SEGMENTATION %




Fixation Prediction

Purpose

> To compute a probabilistic map of an image to predict the actual human eye gaze
patterns

Result

STATE-OF-THE-ART

o ITTI [Itti et al. PAMI 98]
AIM [Bruce et al. NIPS 06]
GBVS [Harel et al. NIPS 07]
DVA [Hou et al. NIPS 08]
SUN [Zhang et al. JOV 08]
SIG [Hou et al. PAMI 12]
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Saliency Detection:
A Spectral Residual Approach

Log Spectrum Representation
> The amplitude A(f) of the averaged L RN

Fourier spectrum of the ensemble of \ s
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Figure 3. Curves of averaged spectra over 1, 10 and 100 images.
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Figure 1. Examples of log spectrum and log-log spectrum. The

- Five-line source code first image is the average of 2277 natural images.
Ay =R(EE@)]). PO =3(5Z@)]).
L) =log (). R(F) = L)~ half) + £().
S() = g(e) 5 exp (R(H)+ P()]



Saliency Detection:
A Spectral Residual Approach

Result

Saliency map ~ Objectmap  Fijrst object
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Saliency map  Object map

Figure 7. An example of attention in different scales.



Salient Object Segmentation

Purpose
> To generate masks that matches the annotated silhouettes of salient objects

Ground-truth: mask

Approaches
> Low-level feature (+ segmentation)

° Popular algorithm
° Perceptual feature
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Segrr

evel| feature +
entation

[09CVPR]Frequency-tuned Salient Region Detection
° First using saliency for outstand region detection

> Build up first dataset with mask of objects

Groundtruth of [6]

User drawn
rectangles

Inaccurate and clubs
multiple objects into
one.

Qur groundtruth

Boundary based
segmentation

Accurate and multiple
objects separated.
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FT- Low-level feature

Color & brightness
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[Image Average —_— I = ay
bu

S(z,y) = |1, —Iwhc(-fva’y)ll

—




FT-Saliency + Segmentation

Combine with mean-shift

.
Compute  |=———> Compute —* If5, =2x5,
saliency map average saliency choose segment

(binarize)

h

for the image S,

Compare
with

7 Al groundtruth
For any segment

Mean-shift | > k, compute avqg. :
segmentation L saliency S, [ Extract object }—
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FT-Result

Real image for test

Result




Popular algorithm

[12CVPR]A Unfied Approach to Salient Object Detection via Low Rank
Matrix Recovery

° Low rank matrix

> Higher-level prior integration

Image Background Salient Object

\ 4 \ 4

F e Low rank matrix L Sparse noises S




_R-Simplifying Low-level
Matrix by Pre-Processing

(L*,S™) = argmin(rank(L) + A || S ||o)

L.S NP Hard...
st. F=L+S
Unified Model (L*,S*) = aryg T{ﬁ;l(” L|+«+A[S]1)
s.t. TFP=L+S

T . alearned linear metric

P: ahigher-level prior map



| R-Result

Real image for test

Result




Perceptual
Feature




Figure/Ground Organization in visual system
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Figure/Ground Organization in visual system

size(CH;) — size(r;)
size(CH;)

i
max (C(rl-) nc (rj))
A surround(r;) = Cr)
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max (size(CHi) N size(CHj))

TjES;

convex(r;) =1 —

Convexity

Surroundedness

surround * (r;) = size(CH;)
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Figure/Ground Organization in
visual system

Meaningfulness
> High-level features

> Top-down info, i.e. Classification
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Combining Two
Tasks

FIXATION PREDICTION + SEGMENTATION
~ SALIENT OBJECT SEGMENTATION
FROM THE SECRETS OF SALIENT OBJECT SEGMENTATION




Combination Model

Fixation predicticn

(omb ned saliency map
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Salient obiedt seqmertation

input image

Satiency weighted segments

(PMCsegments

Grogndtruth



CMPC

Parametric
Min-Cuts

Degree of foreground bias

Object Plausibility

Ranklng

ol higher




F-mieasures on
PASCAL-S dataset

F-measures on

Sdataset
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Problems in
Previous Work

ALSO FROM THE SECRETS OF SALIENT OBJECT
SEGMENTATION




Problems

Dataset bias
> Salient object segmentation dataset is heavily biased

> Images in FT dataset usually have a foreground object with discernable
boundaries being

> Surrounded by background that have contrastive colors

Center-bias
> Easily applied by simple function, e.g. Gaussian filter

> Do great contribution to saliency (human fixations are heavily biased
towards the center of the image



Future Directions

IMAGE DETECTION
VIDEO DETECTION
COMBINATION WITH OBJECTNESS




Future Challenges

Image detection
° Segmentation

° Precision

Video detection
° Time

o Motion information
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Future Directions

Combination with Objectness
> [10CVPR]What is an object
> [131JCV]Selective Search for Object Recognition

° [14CVPR]BING Binarized Normed Gradients for Objectness Estimation at
300fps




Future Directions

Combination with Objectness
[10CVPR]What is an object

[131JCV]Selective Search for Object Recognition
[14CVPR]BING Binarized Normed Gradients for Objectness Estimation at




Future Directions

Combination with Objectness
[10CVPR]What is an object
[131JCV]Selective Search for Object Recognition
[14CVPR]BING Binarized Normed Gradients for Objectness Estimation

(a) source image

x 8 NG features

‘H_'_:.,-". r,i ﬁ = T
(b) normed gradients maps (d) learned model w € R3*8
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[10CVPR]What is an object

Image cues

Multi-scale Saliencv (MS)

MS(w, 05is) = 3 Tus(p) x (2 wlfrfﬁltm 2 6}
{pew|I§c(p)=>0:}

Color Contrast (CC)
cC (mjﬂgc) = Xg(h(w), h(Surr(w, 900)))

Saliency Detection:
A Spectral Residual Approach

|Surr(w,fcc)| — 02 .1

|w] ccC L2 g e o
Edge Density (ED) @ o @
ED(w, 9pp) = =reimwozp) 120(P) Superpixels Straddling (SS)
|Inn[w.:9Eij?| Lgﬂﬂﬂﬂ(bb‘, GED)) SS(w 983) =1 Z IIliIl(lS \ ’LUI, |Sﬂw|)
— e = 1/0p ’ w|
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[131JCV]Selective Search for Object Recognition

Similarity Measures
Colour Fill

n

Scolour(ri:rj) — E mjﬂ(fr‘;(:c‘})

k=1

Texture

n
s rak Gk
Stexture(Ti;Tj) = kz, min({; .1 size(BB;;) — size(r;) — size(r;)
=1

fill(zz.r)) =1~

size(im)
Size
size(r;) + size(r;)

size(im)

Ss:'ze(ri;rj) =1-




[14CVPR]BING Binarized Normed Gradients for
Objectness Estimation

For linear model w:
Ny,
w R Ba;

Nu
a; € {-1,1}"* ~(w,b)~ ) " B;(2(af,b) — |b|)
+ _ .+ = J
2 =8y — 8y

a;‘ € {0,1}%4
For normed gradients teature NG: using the top Ngbinary bits of the

BYTE values Algorithm 2 Get BING features for W x II positions.
N Comments: see Fig. 2 for illustration of variables
— g 28—kb ey . b
g = E 1 k.l Input: binary normed gradient map by « g

Output: BING feature matrix by x g

. Initialize: by g = 0, vy =0
For SVM com P ute. for each position (z, y) in scan-line order do

S A2 ZN“” B; ZNQ C. Pey = (Po—15<€1) | by B
: j=1"1 k=1 ~F% by, =(bry—1 €8)|Tsy:

end for

bk,z’,:z:,y S {09 1}8:(8
shorthand: b, , or by ;

Trixzy € {01 1}8
shorthand: r; , orry

bk,z’,:r:,y S {05 1}
shorthand: b, ,,

# |
4
d # g -

For window shift:
Cjr =257%(2(a), by1)—|bg.)




Future Directions

Object proposal
° Superpixel feature
> Similarity measure
° Re-ranking

Combining top-down information
> Preprocess image for semantic segmentation or classification
> Get top-down info from these following processing
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