Person Re-Identification

Qipeng Guo

qpguo12@fudan.edu.cn

What is Person Re-Identification?

zero-shot one-shot multi-shot

zero-shot: No image, only description

Search

one-shot: One image of target

Search

multi-shot: Multiple images of target

Inter-camera tracking

Basic issue——discrimination

How do we solve this?

- Color of clothes low-level visual feature
- Gender, Stature shape and biologically inspired features
- backpack, glasses ,hat, handbag mid-level features with prior knowledge
- Details of clothes textural features......
- Gait motion features

Color of clothes

Stature

 $Hog \neq Stature$

Mid-level features

Details of clothes

Details Vs. Mid-level

A bird or Pericrocotus flammeus?

Pipeline

Baseline

Two approaches

•Find important regions

Find better features

4 person or less?

Only 3 person

Confusing

Key point and details (hair and shoes)

symmetry-driven accumulation of local features (SDALF)

symmetry-driven accumulation of local features (SDALF)

$$i_{TL} = \underset{i}{\operatorname{argmin}} (1 - C(i, \delta)) + S(i, \delta)$$

$$i_{HT} = \underset{i}{\operatorname{argmin}} (-S(i, \delta))$$

C pixel level S region level

Weighted Color Histograms (WCH)

Maximally Stable Color Regions (MSCR)

Figure 3. Illustration of evolution used in colour MSER detector. Left to right, top to bottom: $d_{\rm thr}=0.0065,\,0.011,\,0.023,\,0.038.$ Each region is painted in a different, random colour.

Recurrent High-Structured Patches(RHSP)

Articulated Appearance Matching

HOG+LDA Histogram of oriented gradients Linear discriminant analysis

Pose Estimation(PS)

Attributes-Based Re-identification

Table 5.1 Our attribute ontology for re-identification

Redshirt	Blueshirt	Lightshirt
Darkshirt	Greenshirt	Nocoats
Not light dark jeans colour	Dark bottoms	Light bottoms
Hassatchel	Barelegs	Shorts
Jeans	Male	Skirt
Patterned	Midhair	Darkhair
Bald	Has handbag carrier bag	Has backpack

Attributes-Based Re-identification

Attributes-Based Re-identification

Support vector machine (SVM)

Mid-level Filters

Supplemental material: RankSVM

Mid-level Filters

Rank SVM

Linear SVM

 $a>b \rightarrow a-b>0$, b-a<0 \rightarrow pos: a-b neg: b-a

Framework

Summary

Task of person re-identification

How do we solve this

Two approaches(better features vs important regions)

Problem

Similar color, different details

Ignore information from video

- Get multiple images of one person by tracking
- Gait recognition

Person Re-Identification Gong, S., Cristani, M., Yan, S., Loy, C.C. (Eds.) 2014, Springer

Chapter 3 SDALF

Chapter 5 Attributes-based

Chapter 7 Articulated Appearance

Learning Mid-level Filters for Person Re-Identfiation,

R. Zhao, W. Ouyang and X. Wang.

IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

Unsupervised Salience Learning for Person Re-Identification,

R. Zhao, W. Ouyang and X. Wang.

IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

Maximally stable colour regions for recognition and matching.

Forssén, P.E

In: IEEE Conference on Computer Vision and Pattern Recognition (2007)

Thank you Q&A

Our Project

Demo Video

If you cannt watch the demo video online please click here to download.

Quick Start

download data/ \$make \$./fudanvideo_demo

