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Features

Videos are naturally multimodal

• Static Appearance Features

• Motion Features

• Acoustic Features

• High-level Features



Static Appearance Features

• Captures Static Appearance Information In Each 
Frame
 shape 

 edge

 color

 even high-level appearance information

• Frame-level Features are averaged to generate 
Video-level representation



Static Appearance Features: 
SIFT

IDEA :  Image content is transformed into local feature 
coordinates that are invariant to translation, rotation, scale, and 
other imaging parameters



Static Appearance Features: 
CNN features
Convolutional Neural Network Recap

CNN is a model of Deep Learning; Unlike hand-crafted features, 

CNN learn features from raw images
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• Next best (non-convnet) – 26.2% error



Static Appearance Features: 
CNN features
Convolutional Neural Network outperforms significantly
• Krizhevsky et al. -- 16.4% error (top-5)
• Next best (non-convnet) – 26.2% error

Pre-trained On ImageNet
The Last 3 layers can be viewed as features



Static Appearance Features: 
CNN features

Convolutional Neural Network 
feature extraction

• Feed-forward feature extraction: 
1. Convolve input with learned filters
2. Non-linearity 
3. Spatial pooling 
4. Normalization



Static Appearance Features: 
CNN features
Convolutional Neural Network achieved a great success

Astounding Baseline with CNN features



Static Appearance Features

Frame-level Features are averaged to 
generate Video-level representation

Frame Video

Average



Motion Features

Plays the most important role for video classification

We introduce 

• Dense Trajectories today: state-of-the-art features 
nowadays (CVPR 11, citation 455 now), still beats DL 
till now. 
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Motion Features: Dense 
Trajectories



Acoustic Features: MFCC

• MFCC (Mel-frequency Cepstral Coefficients)

• Spectrogram SIFT



High-level Features

• ASR (Automatic Speech Recognition)

• OCR



Feature Encoding Strategies

• Bag-of-words Representation
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Feature Encoding Strategies

• BoW is only about counting the number of local 
descriptors assigned to each region 

• Why not including other statistics?



Feature Encoding Strategies

• Fisher Vector Representation

• Including other statistics
 mean of local descriptors 



Feature Encoding Strategies

• Fisher Vector Representation

• Including other statistics
 mean of local descriptors 

variance of local descriptors 



Classification

• For histogram-based features, non-linear 
\chi^2-kernel SVMs

• For Fisher Vector based features, linear SVMs 
is good enough.



Fusion

• Late Fusion 

(Classifier)

• Early Fusion

(Feature)

Early Fusion

Late Fusion



Deep Learning Approach 



Deep Learning Approach 



Challenge

DATA extremely LARGE!

• MED 14 : TEST set, 200,000 video clips, about 4T



Challenge

DATA extremely LARGE!

• MED 14 : TEST set, 200,000 video clips, about 4T



Challenge

DATA extremely LARGE!

• MED 14 : TEST set, 200,000 video clips, about 4T

Data Management
Data transfer

Classifier Training
Slow Feature Extraction

Scp?? 30m/s?
1T needs 9h



Challenge

DATA extremely LARGE!

• MED 14 : TEST set, 200,000 video clips, about 4T

Data Management
Data transfer

Classifier Training
Slow Feature Extraction

Scp?? 30m/s?
1T needs 9h

Too slow!!!!
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