
Three Algorithms in Large Scale

14210240041 Gu Pan

Overview

•  More and more images have appeared on
the Internet.

•  Facebook, Twitter, Instagram…

Overview: Classification
•  Classification is the pr-

oblem of identifying to
which of a set of catego-
ries a new observation
belongs.

•  Linear-SVM
•  Kernel-SVM

Overview: SVM in Large Scale

•  Large image number
•  Large category number

•  Complexity: O(N*M)

Overview: Tree Structure Classifier

•  Each non-leaf node of
decision tree splits the
feature space into two
parts.

•  Each leaf node of dec-
ision tree is labeled
with a category.

•  Complexity: O(N*log2M)

S1

S3

S2

S4

Label Tree

•  Each node makes a pre-
diction of the subset of
labels to be children,
thus decreasing the
number of labels k at a
logarithmic rate until a
prediction is reached.

1

3 2 4

6 5 Got Label 4

Label Embedding Trees for Large Multi-Class Tasks, NIPS 2010

Label Tree: Algorithm Introduction

•  Each node has a
–  label set Li
–  predict function Fi

•  Learning tree structure
•  Learning parameter wi

for each node

L1={1,2,3,4}

L2={1,3}
L3={2} L4={4}

L5={1} L6={3}

1

3 2 4

6 5

F1(x)=w1
Tx

F2(x)=w2
Tx F3(x)=w3

Tx F4(x)=w4
Tx

F5(x)=w5
Tx F6(x)=w6

Tx

Label Tree: Learning Tree Structures

•  Learning structures for each node from its
label set
1.  Calculate confusion matrix C from label set
2.  Using spectral clustering solving graph cut

problem
3.  Create child node by label set split result
4.  Repeat 1-3 for each node

Label Tree: Confusion Matrix

•  Method in paper:
– 
– Non-robust

•  Sigmoid method:
– 

!!" = !,!! ∈ !:!"#$!!!!! ! = ! !!"!!"#$%"&$'(!!"#!!!

!!" =
1

1+ !!!(!)!,!! ∈!
!!!"!!"#$%"&$'(!!"#!!!

Sample f1(x) f2(x)

(x1,1) 0.51 0.49

(x2,1) 0.51 0.49

(x3,2) 0.49 0.51

(x4,2) 0.49 0.51

•  Graph cut for confusion matrix C
– 
– Unbalance for some case

•  Normalized cut
– 

min !!"# !,! = !!"
!∈!,!∈!

!

Label Tree: Spectral Clustering

min !!"#$!,! = !"#(!,!)
!!"!∈!

+ !"#(!,!)!!"!∈!
!

Label Tree: Relaxation 1

•  Independent convex problems
•  Learning parameter for each node indenpently

•  ξij is slack variables
 Cj(y)=1 if y∈Li and -1 otherwise

min ! !!
!
+ 1
! !!"

!

!!!

!

!!!
!

!. !.∀!, !,!! !! !! !! ≥ 1− !!"!

i <- Tree node

Li={ }

Label Tree: Relaxation 2
•  Tree Loss Optimization
•  Learning parameters for all node in a whole

•  ξi is slack variables.

min �
nX

j=1

kwjk2 +
1

m

mX

i=1

⇠i

s.t.fr(xi) � fs(xi)� ⇠i, 8r, s : yi 2 lr ^ yi /2 ls ^ (9p : (p, r) 2 E ^ (p, s) 2 E)
⇠i � 0, i = 1, . . . ,m

p

r s

fr(x) > fs(x)

Label Tree: Results of 1 & 2
Method Training Set Accuracy Testing Set Accuracy

Relaxation 1 0.98 (12510/12800) 0.54 (4171/7680)

Relaxation 2 0.93 (11918/12750) 0.48 (3968/7650)

•  Experiments on Caltech256
•  Relaxation 2 has more parameters need to be adjusted
•  Relaxation 1 has better effect
•  Experiment code available on Github:

https://github.com/gugugupan/LabelTree

Relaxed Hierarchy(RH)

•  Relaxed Hierarchy is based
on the observation that fin-
ding a feature-space partiti-
oning that reflects the class-
set partitioning becomes
more and more difficult
with a growing number of
classes

Constructing Category Hierarchies for Visual Recognition, ECCV2008

C1 C2 C3

Got Label C2

RH: Algorithm Introduction

•  Irregular non-leaf node
counts
–  DAG classifier
–  Number of leaf node = Number of categories

•  Label set for each node
•  Predict function for each

non-leaf node

1

2 3

4 5 6

A B C

L1={A,B,C}

L2={A,B} L3={B,C}

RH: Special Cases

•  Relaxed hierarchy can split non-linear case

F1

F2

F3

Non-­‐linear case

1

2 3

Relaxed Hierarchy

RH: Training(1)

•  Li is the label set for node i
–  Split Li into 3 parts L, R and X
–  Li = L ∨ R
–  X = L ∧ R

1

2 3

4 5 6

A B C

L1={A,B,C}

L2={A,B} L3={B,C}

For node 1: L={A,B}, R={B,C}, X={B}

RH: Training(2)

•  Define function:
– c is a label in Li

–  f(x) is the partition function by K-means
–  f(x) = 1 if x∈Cluster1, and -1 otherwise
– q(c) means the confidence category c belongs

to L or R

! ! = 1
{ !,! |! = !} !(!)

!,! ,!!!
!

RH: Training(3)

•  With function q(c)
–  L = q-1([-1,1-α])
–  R = q-1([-1+α,1])
–  where q−1 denotes an inverse image

and α is a softening parameter

RH: Training(4)

•  Label set of each node is
its identification
–  Hashing or other index

algorithm using here to
find child node

……

Li={A,B,C,D} Li={C,D,E,F}

Li={B,C,D} Li={A,B} Li={C,D} Li={D,E,F}

Li={A} Li={B} Li={C} Li={D}

RH: Results of different α

•  Experiments on Caltech256
•  Experiment code available on Github:

https://github.com/gugugupan/RelaxedHierarchy

0.45

0.5

0.55

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Relaxed Hirarchy

Random Forest(RF)

•  Random forests are an ensemble learning meth-
od for classification (and regression) that opera-
te by constructing a multitude of decision trees
at training time and outputting the class that is
the mode of the classes output by individual
trees.

Random Forests, Machine Learning 45 (1): 5–32, 2001

RF: Algorithm Introduction

•  Bagging of random decision tree

• 

Tree 1 Tree 2 Tree 3 Tree 4

RF: Training

•  Choose num of tree B, for each tree
1.  Select N bootstrap sample for training set
2.  For each node, random choose m(<< D) dimension

subspace and find the best way to split sample in this
subspace(as usual choose 1 dimension for split)

3.  Repeat 2 until leaf node

RF: Increase of Tree Num
•  Experiments on Caltech256
•  RF in training set has good

fitting degree
•  RF in testing set will conve-

rge to some value
•  Experiment code on:

https://code.google.com/
p/randomforest-matlab/
by abhirana

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Training Set Accuary
Testing Set Accuary

References
•  Bengio S, Weston J, Grangier D. Label embedding trees for large

multi-class tasks[C]//Advances in Neural Information Processing
Systems. 2010: 163-171.

•  Marszałek M, Schmid C. Constructing category hierarchies for visual
recognition[M]//Computer Vision–ECCV 2008. Springer Berlin
Heidelberg, 2008: 479-491.

•  Breiman L. Random forests[J]. Machine learning, 2001, 45(1): 5-32.

Thanks

