
Three Algorithms in Large Scale 

14210240041 Gu Pan 



Overview 

•  More and more images have appeared on 
the Internet. 

•  Facebook, Twitter, Instagram… 



Overview: Classification 
•  Classification is the pr-

oblem of identifying to 
which of a set of catego-
ries a new observation 
belongs. 

 
•  Linear-SVM 
•  Kernel-SVM 



Overview: SVM in Large Scale 

•  Large image number 
•  Large category number 

•  Complexity: O(N*M) 



Overview: Tree Structure Classifier 

•  Each non-leaf node of 
decision tree splits the 
feature space into two 
parts. 

•  Each leaf node of dec-
ision tree is labeled 
with a category. 

•  Complexity: O(N*log2M) 
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Label Tree 

•  Each node makes a pre-
diction of the subset of 
labels to be children, 
thus decreasing the 
number of labels k at a 
logarithmic rate until a 
prediction is reached.  
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Label Embedding Trees for Large Multi-Class Tasks, NIPS 2010 



Label Tree: Algorithm Introduction 

•  Each node has a  
–  label set Li 
–  predict function Fi 

 
•  Learning tree structure 
•  Learning parameter wi 

for each node 

L1={1,2,3,4} 

L2={1,3} 
L3={2} L4={4} 

L5={1} L6={3} 
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Label Tree: Learning Tree Structures 

•  Learning structures for each node from its 
label set 
1.  Calculate confusion matrix C from label set 
2.  Using spectral clustering solving graph cut 

problem 
3.  Create child node by label set split result 
4.  Repeat 1-3 for each node 



Label Tree: Confusion Matrix 

•  Method in paper: 
–    
– Non-robust 

•  Sigmoid method: 
–    
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Sample f1(x) f2(x) 

(x1,1) 0.51 0.49 

(x2,1) 0.51 0.49 

(x3,2) 0.49 0.51 

(x4,2) 0.49 0.51 



•  Graph cut for confusion matrix C 
–    
– Unbalance for some case 

•  Normalized cut 
–    
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Label Tree: Spectral Clustering 
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Label Tree: Relaxation 1 

•  Independent convex problems 
•  Learning parameter for each node indenpently 

•  ξij is slack variables 
     Cj(y)=1 if  y∈Li and -1 otherwise 
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Label Tree: Relaxation 2 
•  Tree Loss Optimization  
•  Learning parameters for all node in a whole 

•  ξi is slack variables. 
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Label Tree: Results of 1 & 2 
Method Training Set Accuracy Testing Set Accuracy 

Relaxation 1 0.98 (12510/12800) 0.54 (4171/7680) 

Relaxation 2 0.93 (11918/12750) 0.48 (3968/7650) 

•  Experiments on Caltech256 
•  Relaxation 2 has more parameters need to be adjusted 
•  Relaxation 1 has better effect 
•  Experiment code available on Github:

https://github.com/gugugupan/LabelTree  



Relaxed Hierarchy(RH) 

•  Relaxed Hierarchy is based 
on the observation that fin-
ding a feature-space partiti-
oning that reflects the class-
set partitioning becomes 
more and more difficult 
with a growing number of 
classes 

Constructing Category Hierarchies for Visual Recognition, ECCV2008 
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Got Label C2 



RH: Algorithm Introduction 

•  Irregular non-leaf node 
counts 
–  DAG classifier 
–  Number of leaf node = Number of categories 

•  Label set for each node 
•  Predict function for each 

non-leaf node 
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L1={A,B,C} 

L2={A,B} L3={B,C} 



RH: Special Cases 

•  Relaxed hierarchy can split non-linear case 
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Non-­‐linear  case 
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RH: Training(1) 

•  Li is the label set for node i 
–  Split Li into 3 parts L, R and X 
–  Li = L ∨ R 
–  X = L ∧ R 
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L1={A,B,C} 

L2={A,B} L3={B,C} 

For node 1: L={A,B}, R={B,C}, X={B} 



RH: Training(2) 

•  Define function: 
– c is a label in Li 

–  f(x) is the partition function by K-means  
–  f(x) = 1 if x∈Cluster1, and -1 otherwise  
– q(c) means the confidence category c belongs 

to L or R 
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RH: Training(3) 

•  With function q(c) 
–  L = q-1([-1,1-α]) 
–  R = q-1([-1+α,1]) 
–  where q−1 denotes an inverse image 

and α is a softening parameter  



RH: Training(4) 

•  Label set of each node is 
its identification 
–  Hashing or other index 

algorithm using here to 
find child node 

…… 

Li={A,B,C,D} Li={C,D,E,F} 

Li={B,C,D} Li={A,B} Li={C,D} Li={D,E,F} 

Li={A} Li={B} Li={C} Li={D} 



RH: Results of different α 

•  Experiments on Caltech256 
•  Experiment code available on Github:

https://github.com/gugugupan/RelaxedHierarchy  
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Random Forest(RF) 

•  Random forests are an ensemble learning meth-
od for classification (and regression) that opera-
te by constructing a multitude of decision trees 
at training time and outputting the class that is 
the mode of the classes output by individual 
trees.  

Random Forests, Machine Learning 45 (1): 5–32, 2001 



RF: Algorithm Introduction 

•  Bagging of random decision tree 

•    

Tree 1 Tree 2 Tree 3 Tree 4 



RF: Training 

•  Choose num of tree B, for each tree 
1.  Select N bootstrap sample for training set 
2.  For each node, random choose m(<< D) dimension 

subspace and find the best way to split sample in this 
subspace(as usual choose 1 dimension for split) 

3.  Repeat 2 until leaf node 



RF: Increase of Tree Num 
•  Experiments on Caltech256 
•  RF in training set has good 

fitting degree 
•  RF in testing set will conve-

rge to some value 
•  Experiment code on: 

https://code.google.com/
p/randomforest-matlab/ 
by abhirana 
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