Convolutional Neural Network for
Computer Vision Feature Learning

Dequan Wang

Fudan University

dqwangl2@fudan.edu.cn

September 15, 2014

/54

Pipeline of Machine Visual Perception

Most Efforts in
Machine Learning

Low-level Pre- Feature Feature Inference:
sensing » processing = extract. = selection = predlct_lgn,
recoghnition

\ J

1

* Most critical for accuracy

* Account for most of the computation for testing
* Most time-consuming in development cycle
 Often hand-craft in practice

Slide Courtesy: Kai Yu 2 /54

Learning with Structures

Machine Learning

Low-level Pre- Feature Sl Inference:
sensing > processing » extract. = selection = pred'Ct.'(.m’
recoghnition

\ J

I
Feature Learning

> Kernel Learning » Manifold Learning

» Transfer Learning » Sparse Learning

» Semi-Supervised » Structured Input-Output
Learning Prediction

Slide Courtesy: Kai Yu

3/54

Traditional Recognition System

> Features are key to recent progress in recognition

» Multitude of hand-designed features currently in use

Features are not learned

|

Inout data feature Learning
(p ixels) - representation ﬂ Algorithm
P (hand-crafted) (e.g., SVM)
- E_t
Image _ Low-level Object detection
vision features / classification

(edges, SIFT, HOG, etc.)

Slide Courtesy: Honglak Lee

/54

Traditional Visual Feature

» Where next? Better classifiers or better feature?

InputTmage Gradient Image ",

Textons
HoG

and many others:
SURF, MSER, LBP, Color-SIFT, Color histogram, GLOH,

Slide Courtesy: Honglak Lee

Approaches to Learning Features

* Supervised Learning

— End-to-end learning of deep architectures (e.g., deep
neural networks) with back-propagation

— Works well when the amounts of labels is large

— Structure of the model is important (e.g.
convolutional structure)

* Unsupervised Learning

— Learn statistical structure or dependencies of the data
from unlabeled data

— Layer-wise training
— Useful when the amount of labels is not large

Slide Courtesy: Honglak Lee

6

54

Representation Learning

Supervised

* Support Vector Machine
* Logistic Regression

* Perceptron

* Deep Neural Net
¢ Convolutional Neural Net

¢ Recurrent Neural Net

Shallow
* Denoising Autoencoder

* Restricted Boltzmann machines*

* Sparse coding* \

Deep

————> Deep (stacked) Denoising Autoencoder*

— Deep Belief Nets*

Deep Boltzmann machines*

Unsupervised

Slide Courtesy: Honglak Lee

[~ Hierarchical Sparse Coding*

* supervised version exists

~

54

Learning Non-Linear Features

Given a dictionary of simple non-linear functions: g,,..., g,

Proposal #1: linear combination f(x Z g,

7 -

Proposal #2: composition f(x)~g,(g,(...g,(x)...))

Slide Courtesy: Marc'Aurelio Ranzato 8 /54

Linear Combination

/T\prediction of class
>(+)=

T

60| [+

5o

templete matchers

BAD: it may require
an exponential nr. of

templates!!!

Slide Courtesy: Marc'Aurelio Ranzato

|iiE| #\\

54

Composition

prediction of class

high-level =
parts @ eee (0

mid-level = reuse intermediate parts
parts = distributed representations
low level =1ZNRIANTIL A4
GOOD: (exponentially)
Input image Bt . more efficient

Slide Courtesy: Marc'Aurelio Ranzato 10 /54

Ranzato’'s Definition

Deep Learning is a method which makes predictions by using a
sequence of non-linear processing stages. The
resulting intermediate representations can be
interpreted as feature hierarchies and the whole
system is jointly learned from data.

» Some deep learning methods are probabilistic, others are

loss-based, some are supervised, others are unsupervised ...

Slide Courtesy: Marc'Aurelio Ranzato

11 /54

Deep Learning in Practive

Optimization is easy, need to know a few tricks of the trade.

Q: What's the feature extractor? And what's the classifier?

A: No distinction, end-to-end learning!

Slide Courtesy: Marc'Aurelio Ranzato

12 /54

A Potential Problem with Deep Learning

Optimization is difficult: non-convex, non-linear system

O
Q
(/2]
»
=
@
=

)
N

Solution #1: freeze first N-1 layer (engineer the features)
It makes it shallow!
- How to design features of features?
- How to design features for new imagery?

13 /54

Slide Courtesy: Marc'Aurelio Ranzato

A Potential Problem with Deep Learning

Optimization is difficult: non-convex, non-linear system

=5 LLL

Solution #2: live with it!
It will converge to a local minimum.
It is much more powerful!!

Given lots of data, engineer less and learn more!!
Just need to know a few tricks of the trade...

Slide Courtesy: Marc'Aurelio Ranzato

14 /54

Convolutional Neural Network

* Feed-forward: [
— Convolve input
— Non-linearity (rectified linear) {

Feature maps

iy

Pooling

— Pooling (local max)

* Supervised

ity

Non-linearity

* Train convolutional filters by

C1: feature maps
INPUT
A 6@28x28

iy

i . cpe . Convolution
back-propagating classification error [(Learned)
. LeCun et al. 1998
S4:f. maps 16@5x5
— T ITT_ & reer QLT [Input Image
[

|
‘ ‘ | Full conflection | Gaussian connections

Slide Courtesy: Rob Fergus

Full connection

15 /54

Generalization Error Decomposition

v

Given observations (X, Yi),i=1,...,n

v

Lear a predictive function f(X)
Generalization error E[L(f(X), Y)]

v

E[L(F(X),Y)] = A+ E+0O

v

Approximation error—model class

Estimation error—data size

v

v

Optimization error—algorithm

Slide Courtesy: Kai Yu 16 / 54

Generalization Error Decomposition

E[L(F(X),Y)] = A+ E+O

» Approximation error—use complex model
» Estimation error—collect big data

» Optimization error—design an OK algorithm

Trend of Machine Learning

» Approximation error: simple model—complex model
» Estimation error: small data—big data

» Optimization error: fine algorithm—scalable algorithm

Slide Courtesy: Kai Yu

17 /54

Why Today

* Non-convex & non-linear

* Intense computation

* Sensitive to initialization

* Qverfitting &
* Vanishing gradient .

P

Big data

— GPU

Large scale parallel computation

— Layer-wise pre-training

— RELU, drop-out, better normalization, etc.

Slide Courtesy: Kai Yu 18 /54

Deep Learning

Reducing the Dimensionality of
Data with Neural Networks

G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent
can be used for fine-tuning the weights in such “autoencoder” networks, but this works well only if
the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data.

imensionality reduction facilitates the
classification, visualization, communi-
cation, and storage of high-dimensional

data. A simple and widely used method is
principal components analysis (PCA), which

finds the directions of greatest variance in the
data set and represents each data point by its
coordinates along each of these directions. We
describe a nonlinear generalization of PCA that
uses an adaptive, multilayer “encoder” network

19 /54

Benchmark for ImageNet

L ECe oo ve RN SRRERH Y | KA HENTCH VEeoBEom
S ol :=%. O CEATIER O | ~ i ME! S \ BERENG LE=E

.=w§§‘i“==;: s 72%, 2010

74%, 2011

85%, 2012

Slide Courtesy: Kai Yu 20 /54

Traditional System on ImageNet

Input Image X Output Labels

)

Local Gradients Pooling Variants Pooling Linear

of Sparse Coding: Classifier
LLC, Super-vector
e.g, SIFT, HOG

Slide Courtesy: Kai Yu 21/54

Drawback of Traditional System

+ All these methods are not scalable
— Handcrafted descriptors, time consuming, limited prior knowledge
— Representations by unsupervised learning,not tunable
— Cannotfully utilize large-scale training data

Feature

Images Extraction

> Representations =#»| Classifier ~» Decisions

* We need to enable end-to-end learning.

Slide Courtesy: Kai Yu 22 /54

Deep Learning for Vision@CVPR 2012 Tutorial

Buiding blocks

» RBMs, Autoencoder, Sparse Coding

Go deeper: Layerwise feature learning
> Layer-by-layer unsupervised training
> Layer-by-layer supervised training

Fine tuning via Backpropogation

> If data are big enough, direct fine tuning is enough

» Sparsity on hidden layers are often useful

Slide Courtesy: Kai Yu

23 /54

Sparsity vs. Locality

* Intuition: similar data should
get similar activated features

sparse coding
* Local sparse coding:
+ data in the same

neighborhood tend to

have shared activated

local sparse
features;

coding

+ data in different
neighborhoods tend to
have different features
activated.

Slide Courtesy: Kai Yu

24 /54

Challenge to Deep Learners

Key Issues

» What if no hand-craft features at all?

» What if use much deeper neural networks?

Answer from Geoff Hinton

» Our chief critic, Jitendra Malik, has said that this competition
is a good test of whether deep neural networks really do work
well for object recognition.

Slide Courtesy: Kai Yu

25 /54

The Architecture

— 7 hidden layers not counting max pooling.

— Early layers are conv.,, last two layers globally connected.

— Uses rectified linear units in every layer.

— Uses competitive normalization to suppress hidden activities.

S, 3&__; 3&2‘»}. K==
- b7 PAGE! - 13 Qj =7 13
384 384 256

Max
Max Max pooling
pooling pooling

4096 4096

Slide Courtesy: Geoff Hinton 26 /54

The Architecture

category
Total nr. params: 60M prediction Total nr. flops: 832M
4M | LINEAR | 4M
|
16M | FULLY CONNECTED 16M
37M | FULLY CONNECTED | 37M

442K 74M

1.3M
884K

224M
149M

307K

223M

35K 105M

Slide Courtesy: Marc'Aurelio Ranzato

27 /54

Why Deep

> When input has hierarchical structure, the use of a
hierarchical architecture is potentially more efficient because
intermediate computations can be re-used.

» Architectures are efficient also because they use distributed
representations which are shared across classes.

[1T100010100001101...] motorike

[0010000100110010...] tuck

Slide Courtesy: Marc'Aurelio Ranzato 28 /54

Why Hierarchy

Theoretical

» One limitation was based on the well-known depth-breadth
tradeoff in circuits design Hastad [1987].

» This suggests that many functions can be much more
efficiently represented with deeper architectures, often with a
modest number of levels (e.g., logarithmic in the number of
inputs).

Biological

» Visual cortex is hierarchical
(Hubel-Wiesel Model)

Slide Courtesy: Kai Yu

29 /54

Learning Feature Hierarchy

1. Learn useful higher-level features from images

Feature representation

3rd layer
“Objects”

Input data

2nd layer
“Object parts”

1st layer

“Edges”
Lee et al., ICML 2009;

CACM 2011 Pixels

2. Fill in representation gap in recognition

Slide Courtesy: Honglak Lee

30/54

Mid-Level Representation

» Mid-level cues

— I\ || T T

Continuation Parallelism Junctions Corners

“Tokens” from Vision by D.Marr: ;7 \ ..:.':- o ‘

« Object parts:
Y
o W & = 4

» Difficult to hand-engineer = What about learning them?

Slide Courtesy: Rob Fergus 31 /54

Locally Connected Layer

STATIONARITY? Statistics is similar at
different locations

Share the same parameters across
different locations (assuming input is
stationary):

Convolutions with learned kernels

- Spatial correlation is local
- Waste of resources + we have not enough
training samples anyway..

Slide Courtesy: Marc'Aurelio Ranzato 32/54

Convolutional Layer

Share the same parameters across
different locations (assuming input is
stationary):

Convolutions with learned kernels

Slide Courtesy: Marc'Aurelio Ranzato

33/54

Convolutional Layer

K
/h’]’.: max (0, Zk_/lﬁzl/*;v};)

output input feature kernel
feature map map

Slide Courtesy: Marc'Aurelio Ranzato 34 /54

Convolutional Layer

A standard neural net applied to images:

» scales quadratically with the size of the input

» does not leverage stationarity

Solution:

» connect each hidden unit to a small patch of the input

» share the weight across space

Slide Courtesy: Marc'Aurelio Ranzato

35 /54

Convolutional Layer

What is the size of the output?

It is proportional to the number of filters and depends on the stride.
If kernels have size K x K, input has size D x D, stride is 1, and
there are M input feature maps and N output feature maps then:

> the input has size M@DxD
» the output has size NO(D — K+ 1) x (D — K +1)

» the kernels have MxNxKxK coefficients

How many feature maps?

> Usually, there are more output feature maps than input

feature maps. Convolutional layers can increase the number of
hidden units by big factors

Slide Courtesy: Marc'Aurelio Ranzato

36

54

Pooling Layer

Let us assume filter is an “eye” detector
Q.: how can we make the detection robust to
the exact location of the eye?

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

Slide Courtesy: Marc'Aurelio Ranzato

37/54

Pooling Layer Interpretation

Task: detect orientation L/R

Conv layer:

linearizes manifold Y @ ’ﬁf ;

Pooling layer:
collapses manifold

Slide Courtesy: Marc'Aurelio Ranzato 38 /54

Pooling Layer Receptive Field Size

hn—l

Conv.
layer

hn

Pool.
layer

hn+1

-~

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:

(P+K-1)x(P+K-1)

Slide Courtesy: Marc'Aurelio Ranzato

39 /54

Pooling Layer Examples

Max-pooling:
n _ n—1/—- —
hj(x’ y)_maxfEN(x),j)EN(y)hj (x’ y)
Average-pooling:

h]<x: y)zl/KZRGN(X),}_/EN(
L2-pooling:

n _ n—1,/—_ —\2
hj(x’y)_\/zfeN(x),yeN(y) hj (ny)

y)

L2-pooling over features:

SERIED I AN

Slide Courtesy: Marc'Aurelio Ranzato

40 / 54

Local Contrast Normalization

i1 _h(x,y)-m'(N(x,y))
e = N)

Performed also across features
and in the higher layers..

Effects:

— improves invariance
— improves optimization
—increases sparsity

Note: computational cost is
negligible w.r.t. conv. layer.

Slide Courtesy: Marc'Aurelio Ranzato

41/54

Components of Each Layer

Pixels /
Features

[Optional]

Slide Courtesy: Rob Fergus

r
Filter with | " + Non-linearity
Dictionary
(convolutional

\Or tiled)
==
(- "
Spatial/Feature /p\ /{
(Sum or Max) ...
h = - =
I
Normalization
between |:>
Output
feature Features
\ responses

42 /54

Filtering

» Convolutional

— Dependencies are local
— Translation equivariance
— Tied filter weights (few param
— Stride 1,2,... (faster, less me

Featur Map

Slide Courtesy: Rob Fergus

43 /54

Non-Linearity

* Non-linearity .
— Per-element (independer; .
— Tanh

- 1/(1+exp(-x))
— Rectified linear
+ Simplifies backprop
* Makes learning faster
* Avoids saturation issues

relu(x)

- Preferred option

Slide Courtesy: Rob Fergus 44 / 54

Pooling

 Spatial Pooling
— Non-overlapping / overlapping regions
— Sum or max
— Boureau et al. ICML10 for theoretical analysis

Max

Slide Courtesy: Rob Fergus 45 /54

Normalization

* Contrast normalization (across feature maps)
— Local mean =0, local std. = 1, “Local” = 7x7 Gaussian
— Equalizes the features maps

Feature Maps
Feature Maps After Contrast Normalization

Slide Courtesy: Rob Fergus 46 / 54

Compare with SIFT Descriptor

4

Image .
Apply

Pixels :>

YANES

Gabor filters et A |
S
==
f DA
Spatial pool /-1 - k¥
EREcEE e g
Gum) KGR KPR
e
Ep=
4
Normalize to
unit length
\

Slide Courtesy: Rob Fergus

Y

Feature
Vector

47 /54

ConvNets: till 2012

Common wisdom: training does not work
Loss because we “get stuck in local minima”

Slide Courtesy: Marc'Aurelio Ranzato 48 /54

ConvNets: today

ALoss

Local minima are all similar, there are long
plateaus, it can take long to break symmetries.

Optimization is not the real problem when:
— dataset is large

— unit do not saturate too much

— normalization layer

-

Slide Courtesy: Marc'Aurelio Ranzato

parameter

Choosing the Architecture

» Task dependent

» Cross-validation

» [Convolution — Pooling]* + Fully Connected

» The more data, the more layers and kernels
1. Look at the number of parameters at each layer
2. Look at the number of flops at each layer

» Computational resources

Slide Courtesy: Marc'Aurelio Ranzato 50 /54

Good to Know

v

Check gradients numerically by finite differences

Visualize features
feature maps need to be uncorrelated and have high variance

v

v

Visualize parameters

v

Measure error on both training and validation set

v

Test on a small subset of the data and check the error — 0

GOOD BAD BAD

: =MANMKENS
NEANAEEWD
ERATE AT

2113 & Al

oL AYT
T L A AT A
aar m L A L
el o P 17T L ¥)
too correlated lack structure

too noisy

Good training: learned filters exhibit structure and are uncorrelated.

Slide Courtesy: Marc'Aurelio Ranzato 51 /54

What if it does Not Work

v

Training diverges:
> Learning rate may be too large — decrease learning rate
» Back Propagation is buggy —a numerical gradient checking

v

Parameters collapse — Check loss function:

» Is it appropriate for the task you want to solve
» Does it have degenerate solutions? Check " pull-up” term

v

Network is underperforming

» Compute flops and nr. params.— if too small, make net larger
» Visualize hidden units/params — fix optmization

v

Network is too slow

» Compute flops and nr. params.
» GPU, distributed framework, make net smaller

Slide Courtesy: Marc'Aurelio Ranzato 52 /54

Summary

» Deep Learning = Learning Hierarchical Representations
» Supervised Learning: most successful set up today
» Optimization
» Don't we get stuck in local minima? No, they are all the same
» In large scale applications, local minima are even less of an
issue
» Scaling
» GPUs
» Distributed framework
» Better optimization techniques
» Generalization on small datasets (curse of dimensionality)

» Data augmentation
Weight decay
Dropout

Unsupervised Learning
Multi-task Learning
Transfer Learning

vV vy vy VvYyy

Slide Courtesy: Marc'Aurelio Ranzato 53 /54

Thank You

Q&A

54 /54

	Introduction
	Deep Learning
	Tricks of the Trade

