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Domain Adaptation (DA)
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Definition

Image segmentation is the process of partitioning a digital image
into multiple segments (sets of pixels, also known as superpixels).

Image segmentation is typically used to locate objects and
boundaries (lines, curves, etc.) in images.

Image segmentation is the process of assigning a label to every
pixel in an image such that pixels with the same label share certain
characteristics.
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Segmentation by Graph cuts

A B C 

w 

Break Graph into Segments

Delete links that cross between segments
Easiest to break links that have low cost (low similarity)

similar pixels should be in the same segments
dissimilar pixels should be in the different segments
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Image Segmentation Algorithms

Cut in Graphs

A B 

Link Cut

set of links whose removal makes a graph disconnected
cost of a cut:

cut(A,B) =
∑

p∈A,q∈B

cp,q (1)

One idea: Find the minimum cut.

fast algorithms exist for doing this
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Image Segmentation Algorithms

Cut in Graphs

But min cut is not always the best cut...

[Shi and Malik, 2000]
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Image Segmentation Algorithms

Cut in Graphs

A B 

Normalized Cut [Shi and Malik, 2000]

a cut penalizes large segments

fix by normalizing for size of segments

Ncut(A,B) =
cut(A,B)

volumn(A)
+

cut(A,B)

volumn(B)
(2)

volume(A) = sum of costs of all edges that touch A
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Image Segmentation Algorithms

Recursive Normalized Cut

1 Given an image or image sequence, set up a weighted graph:
G = (V ,E )

Vertex for each pixel
Edge weight for nearby pairs of pixels

min
x

Ncut(x) = min
y

yT (D−W)y
yTDy

(3)

2 Solve for eigenvectors with the smallest eigenvalues:
(D−W)y = λDy

3 Use the eigenvector with the second smallest eigenvalue to
bipartition the graph

Note: this is an approximation

4 Recursively repartition the segmented parts if necessary 1

1Details: http://www.cs.berkeley.edu/˜malik/papers/SM-ncut.pdf
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Image Segmentation

Image Segmentation Algorithms

Normalized Cut: Pros and Cons

Pros

Generic framework, can be used with many different features and
affinity formulations
Provides regular segments

Cons

Need to chose number of segments
High storage requirement and time complexity
Bias towards partitioning into equal segments
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Image Segmentation Algorithms

Graph cuts Segmentation

1Derek Hoiem@MRFs and Graph Cuts Segmentation
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Markov Random Fields

    0    1 
0  0    K   
1  K    0 

Pairwise Potential 

Unary potential 

0: -logP(yi = 0 ; data) 
1: -logP(yi = 1 ; data)  

Energy(y; θ, data) =
∑
i

ψ1(yi , θ, data) +
∑

i,j∈edges

ψ2(yi , yj , θ, data)

Cost to assign a label to each pixel

Cost to assign a pair of labels to connected pixels
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Solving MRFs with Graph cuts

Source (Label 0) 

Sink (Label 1) 

Cost to assign to 0 

Cost to assign to 1 

Cost to split nodes 
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Graph cuts Segmentation

1 Define graph

usually 4-connected or 8-connected

2 Define unary potentials

Color histogram or mixture of Gaussians for background and
foreground

unary potential(x) = − log

(
P(c(x); θforeground)

P(c(x); θbackground)

)
3 Define pairwise potentials

pairwise potential(x , y) = k1 + k2 exp

{
−‖c(x)− c(y)‖

2σ2

}
4 Apply graph cuts [Kolmogorov and Zabin, 2004]

1Derek Hoiem@MRFs and Graph Cuts Segmentation
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Image Segmentation Algorithms

Graph cuts: Pros and Cons

Pros

Very fast inference
Can incorporate recognition or high-level priors
Applies to a wide range of problems (image labeling, recognition)

Cons

Need unary terms (not used for generic segmentation)

1Derek Hoiem@MRFs and Graph Cuts Segmentation
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Image Segmentation

Image Segmentation Algorithms

Other Segmentation Algorithms

Cluster-based Segmentation
Mean Shift
K-means
...

Edge-based Segmentation
Watershed Segmentation

Hierarchical segmentation from soft boundaries

...

Figure: The concept of watershed
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Semantic Segmentation

Traditional Semantic Segmentation

Definition

Semantic segmentation (or pixel classification) associates one of
the pre-defined class labels to each pixel

The input image is divided into the regions, which correspond to the
objects of the scene or ‘stuff’
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Traditional Semantic Segmentation

Overview

Unary	
  Poten+als	
  

Alpha	
  Expansion	
  
Graph	
  Cuts	
  

[Shotton et al., 2006]
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Semantic Segmentation

Weakly Supervised Semantic Segmentation

Difference from Traditional Model

Only image-level labels for training stage

How to calculate unary potential from weakly labeled images
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Semantic Segmentation

Weakly Supervised Semantic Segmentation

Figure out Unary Potential from Weakly Labeled Images

[Vezhnevets and Buhmann, 2010]

Sheng Zeng Weakly Supervised Learning in Semantic Segmentation



Weakly Supervised Learning in Semantic Segmentation
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Weakly Supervised Semantic Segmentation

Multi-Image Model

Unary potential: Naive Bayes appearance model + Objectness prior

Pairwise potential: Multi-Image Model [Vezhnevets et al., 2011]
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Multi-Image Model

[Vezhnevets et al., 2011]
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Multi-Image Model

[Vezhnevets et al., 2011]
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Weakly Supervised Semantic Segmentation

Multi-Image Model

(D) 

[Vezhnevets et al., 2011]
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Semantic Segmentation

Weakly Supervised Semantic Segmentation

Image Level Prior

[Xu et al., 2014]

Significance of Image Level Prior

Truth-tag 44% vs. CNN-tag 28%
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Weakly Supervised Semantic Segmentation

Active Learning

[Vezhnevets et al., 2012]
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Weakly Supervised Semantic Segmentation

Dual Clustering for Semantic Segmentation

[Liu et al., 2013]
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Weakly Supervised Semantic Segmentation

Dual Clustering for Semantic Segmentation

Spectral Clustering

min
Y ,W

Tr [Y TLY ] + α
∥∥XTW − Y

∥∥2

F
+ β ‖W ‖2,1 + γ

I∑
i=1

C∑
c=1

∣∣∣∣max
xij∈Xi

y c
ij − gic

∣∣∣∣

Discriminative Clustering

Weakly-Supervised Constraint
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Semantic Segmentation

Weakly Supervised Semantic Segmentation

Classifier Evaluation for Weakly Supervised Learning

superpixel	
  

Training	
  images	
  

Evalua&on	
  
	
  

classifiers	
  

Op2mal	
  classifier	
  for	
  
each	
  seman2c	
  class	
  

Tes2ng	
  images	
   Results	
  

We	
  use	
  	
  
evalua&on	
  of	
  classifiers	
  

instead	
  of	
  	
  
training	
  a	
  classifier 

[Zhang et al., 2013]
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Weakly Supervised Semantic Segmentation

Classifier Evaluation for Weakly Supervised Learning
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